
Ornamental and Turfgrass IPM

Norm Leppla, UF/IFAS IPM Program Director

Ornamental and Turfgrass IPM

Learning Objectives

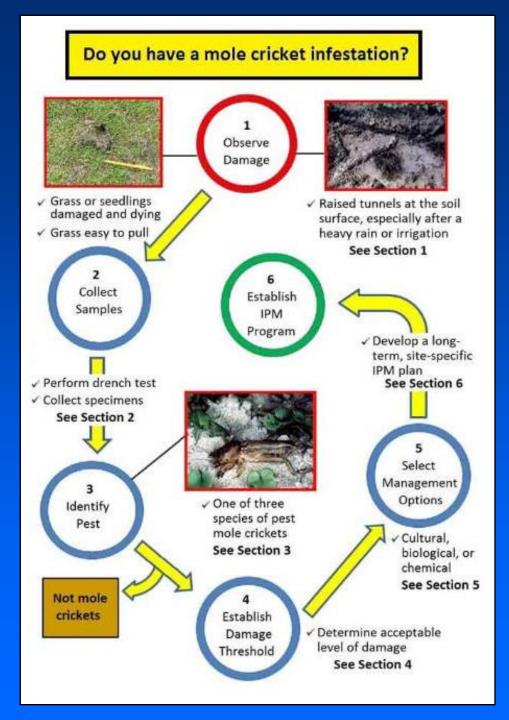
Common Practices

- 1. Explain integrated pest management.
- 2. Name the 5 main practices common to all IPM programs.
- 3. Explain pest identification.
- 4. Explain control-action guidelines.
- 5. Explain how to prevent pest problems.
- 6. Describe biological control.
- 7. Describe cultural control.
- 8. Describe physical and mechanical control.
- 9. Describe chemical control.

- . Identify pests correctly
- 2. Monitor and scout pests
- 3. Follow control-action guidelines
- 4. Prevent pest problems
- 5. Use different IPM practices together (integrate)

What is Integrated Pest Management?

Integrated Pest Management (IPM) is a sustainable, science-based, decisionmaking process that combines biological, cultural, physical and chemical tools to identify, manage and reduce risk from pests and pest management tools and strategies in a way that minimizes overall economic, health and environmental risks. (National IPM Roadmap)


https://www.ars.usda.gov/ARSUserFiles/O PMP/IPM%20Road%20Map%20FINAL.pdf Integrated Pest Management (IPM) includes reducing pest management expenses, conserving energy, and reducing the risk of exposure to people, animals, and the environment.

A combination of effective tactics are used to manage pests at an acceptable level (threshold) on ornamental plants and turfgrass.

Use pesticides only if necessary because other methods have not maintained the pests at an acceptable level.

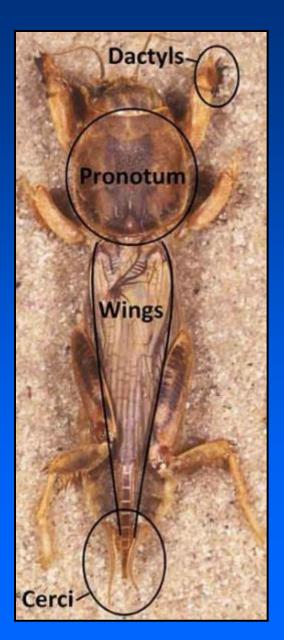
Mole Cricket IPM Guide for Florida

> http:// edis.ifas. ufl.edu/ in1021

- 1. Identify pests correctly
- 2. Monitor and scout pests
- 3. Follow control-action guidelines
- 4. Prevent pest problems
- 5. Use different IPM practices together (integrate)

Chris Kerr, Norm Leppla, Eileen Buss, and Howard Frank

Step 1: Observe Damage



Step 2: Collect Samples

Step 3: Identify Pest

Tawny mole cricket Neoscapteriscus vicinus

Southern mole cricket Neoscapteriscus borellii

Shortwinged mole cricket Neoscapteriscus abbreviatus

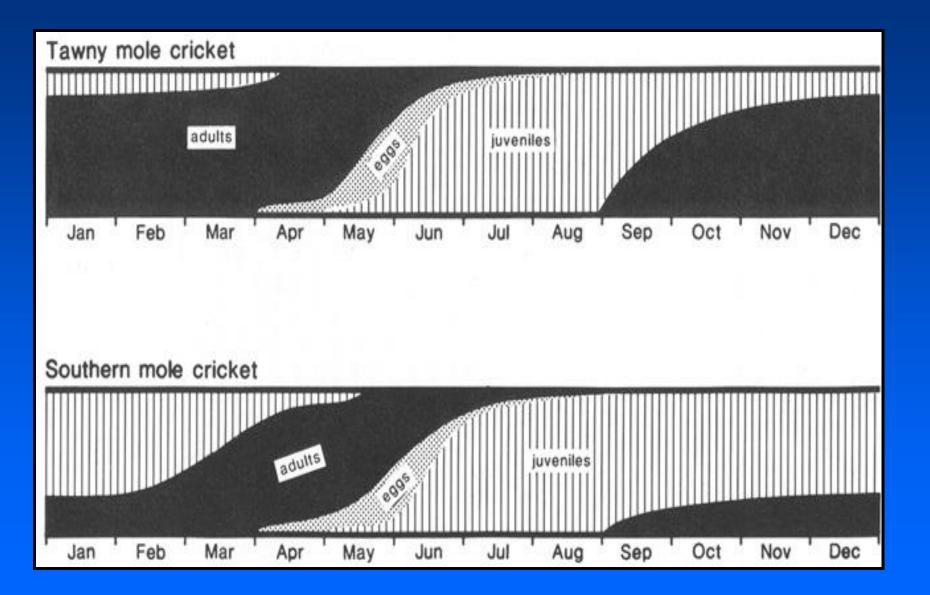
Pest Mole Cricket Geographical Distributions

Neoscapteriscus vicinus

N. abbreviatus

N. borellii

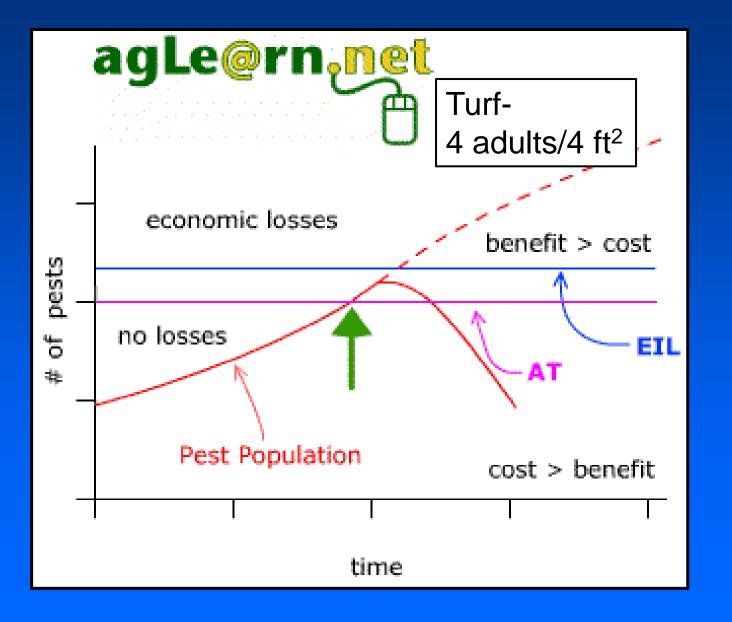
Mole Cricket Stages of Development



L. Buss

Seasonal Distribution of Mole Cricket Stages

UF/IFAS Diagnostic Services


https://diagnostics.ifas.ufl.edu/

Florida Department of Agriculture and Consumer Services Division of Plant Industry

https://www.fdacs.gov/Divisions-Offices/Plant-Industry

Step 4: Establish Damage Threshold

- 1. Identify pests correctly
- 2. Monitor and scout pests
- 3. Follow control-action guidelines
- 4. Prevent pest problems
- 5. Use different IPM practices together (integrate)

Step 5: Select Management Options

- Cultural control
- Mechanical control
- Tolerant cultivars
- Soil moisture
- Lighting
- Plant health
- Biological control
- Chemical control

Mechanical and Physical Controls

Chemical Control

- Pesticides are poisons, follow label
- Avoid non-target effects, e.g., you
- Use pesticides only when needed
- Do not apply pesticides based on the calendar
- Select least toxic pesticides

Insecticide Mode of Action

Maximize

Metabolic Processes

including:

disruptors of ATP

Acting on a wide range of metabolic processes

Group 12 Inhibitors of oxidative phosphorylation,

Minimize

Moulting & Metamorphosis

Group 18 Ecdysone agonist / disruptor Tebufenozide Group 7 Juvenile hormone mimics Fenoxycarb, Methoprene, etc

Cuticle Synthesis

Benzoylureas (Lepidoptera

Groups 15, 16 and 17

Inhibitors of chitin

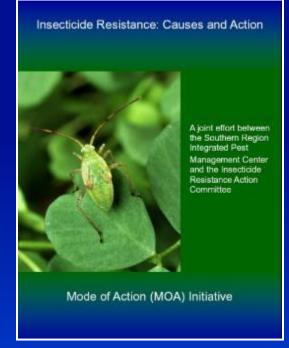
biosynthesis

Midgut Group 11 Microbial disruptors of insect midgut membranes Toxins produced by the bacterium Bacillus thuringiensis (Bt): Bt sprays and Cry proteins expressed in transgenic Bt crop varieties (specific crossresistance sub-groups)

Carbamates and Organophosphates Group 2 GABA-gated chloride channel antagonists Cyclodienes and Fiproles Group 3 Sodium channel modulators DDT, pyrethrins, pyrethroids Group 4 Acetylcholine receptor agonists Neonicotinoids Group 5 Acetylcholine receptor modulators Spinosyns Group 6 Chloride channel activators Avermectin, Emamectin Benzoate and Milbemycin Group 22 Voltage dependent sodium channel blocker

Group 1 Acetylcholinesterase (AChE) inhibitors

Indoxacarb



Non-specific MoA

Nervous System

IRAC- 32 groups plus unknown MOA

Pesticide Resistance Management

IRAC

HRAC

FRAC

UF/IFAS Principles of Pesticideshttp://agronomy.ifas.ufl.edu/pdfs/syllabi/ipm5305.pdf

Alan Roe (Utah State University), New classes of pesticideshttps://utahpests.usu.edu/slideshows/ppt/05sh-pesticides-new.pdf

Brand Name Versus Active Ingredient

Clothianidin 0.25%

Imidacloprid 0.72% Beta-cyfluthrin 0.36%

FOR HOME & VEGETABLE FRUIT **JRNAMENTAL & FLOWER G** LAWNS, AND AROUND THE HOME

KILLS BY CONTACT AND KEEPS PROTECTING UP TO 3 MONTHS⁺

KEEP OUT OF REACH OF CHILDREN

By. Wt.

Active Ingredient: Zeta-Cypermethrin*......0.35% *Except ticks

(* This product contains 0.03 pounds active ingredient per gallon.)

Net Contents: 1 Quart (946 mL)

Insecticide Active Ingredients Registered for Mole Cricket in Golf Courses and Athletic Fields

Active Ingredient	IRAC Number	Active Ingredient	IRAC Number
Acephate	1B	Fipronil	2B
Allyl isothiocyanate & capsaicin		Imidacloprid	4A
Beauveria bassiana	Biopesticide	Indoxacarb	22A
Beta-cyfluthrin	3A	Lambda-cyhalothrin	ЗA
Bifenthrin	3A	Permethrin	ЗA
Bifenthrin &	ЗA	Piperonyl butoxide &	27A
imidacloprid	4A	permthrin	ЗA
Bifenthrin &	ЗA	Piperonyl butoxide &	27A
zeta-cypermethrin	ЗA	pyrethrins	ЗA
Bifenthrin	ЗA		
imidacloprid &	4A	Pyrethrins	ЗA
zeta-cypermethrin	ЗA		
Carbaryl &	1A		
		Thiamethoxam	4A
bifenthrin	ЗA		
		Thiamethoxam &	4A
Chlorpyrifos	1B		
		azoxystrobin (fungicide)	
Cyfluthrin	3A	Trichlorfon	1B

Pesticide Information

- NPIRS (National Pesticide Information Retrieval System)https://pested.ifas.ufl.edu/
- CDMS (Crop Data Management Systems)https://www.cdms.net/
- EPA (Environmental Protection Agency)https://www.epa.gov/pesticides
- UF/IFAS Pesticide Information Officehttps://pested.ifas.ufl.edu/
- UF/IFAS Cooperative Extensionhttps://sfyl.ifas.ufl.edu/

Prevention- Areawide Pest Management

Chinch bug damage

Gray leaf spot

Mechanical Pest and Disease Inoculator

Prevention- Areawide Pest Management

Step 6: Establish IPM Program

Mole Cricket IPM

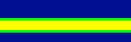
- Use tolerant grass cultivar or species
- Maintain healthy grass
- Perform routine soil testing- fertilizer or lime
- Reduce watering during winter months
- Plant nectar sources for Larra wasps
- Eliminate lights during evening
- Sample regularly for mole crickets
- Apply insecticides if threshold exceeded
- Target and map infested areas- spot treat
- Rotate insecticide classes
- ✓ Keep records

- 1. Identify pests correctly
- 2. Monitor and scout pests
- 3. Follow control-action guidelines
- 4. Prevent pest problems
- 5. Use different IPM

practices together (integrate)

IPM Guides

UF FLORIDA


Farm.Journal

Series Dates Sectores Sectores Sectores Sectores Sectores

Electronic Data Information Source (EDIS)

• Agriculture

- Community Development
- Environment
- Families & Consumers
- 4H Youth development
- Lawn & Garden

Aquaculture

- Crops
- Livestock
- Nursery & GH
- Organic farming
- Agricultural safety
- Small farms
- Turf & sod

7,000+ publications

http://edis.ifas.ufl.edu/

University of Florida Institute of Food and Agricultural Sciences

Iorida Department of Agriculture and Consumer Services

Featured

Creatures

Featured Creatures provides in-depth profiles of insects, nematodes, arachnids and other organisms. The site is a cooperative venture of the University of Florida, IFAS, Entomology and Nematology Department and the Florida Department of Agriculture and Consumer Services, Division of Plant Industry.

http://entnemdept.ufl.edu/creatures/

Pesticide Information Office

Pesticide Information ~~

Integrated Pest Management

For Applicators Pesticide Exams ~ CEUs ~

Exam Administrators

https://pested.ifas.ufl.edu/

Dr. Jason Ferrell (Jay)

Pest Management University

Termite Training

General Household
Pest (GHP) Training

Landscape & Ornamental (L&O) Pesticide Training

Dr. Faith Oi

https://pestmanagementuniversity.org/

University of Florida Plant Medicine Program

<u>Teaching IPM to Future</u> <u>Plant Doctors</u>

http://dpm.ifas.ufl.edu/

Dr. Amanda Hodges

IPM Florida

IPM Florida Personnel Purpose of Website IPM Florida Documents IPM Projects IPM Florida Partners IPM Funding IPM-Related Organizations IPM Florida ListServ

Extension/Education

Extension Resources IPM Education and Training Photo Galleries Presentations Publications Videos Videos Video Classics

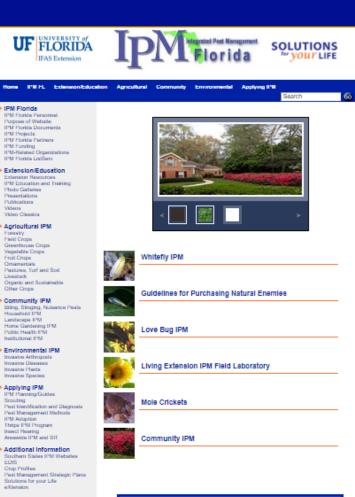
Agriouitural IPM

Foreatry Field Crops Greenhouse Crops Vegetable Crops Fruit Crops Ornementals Pastures, Turf and Sod Livestock Organic and Sustainable Other Crops

Community IPM

Biling, Slinging, Nuisance Peats Household IPM Landscape IPM Home Gardening IPM Public Health IPM Institutional IPM

Environmental IPM


Invasive Arthropoda Invasive Diseases Invasive Planta Invasive Species

Applying IPM

IPM Planning/Guides Scouting Peat Management Methods IPM Adoption Thrips IPM Program Insect Rearing Areawide IPM and SIT

Additional Information

Southern States IPM Websites EDIS Crop Profiles Peat Management Strategic Plans Solutions for your Life eXtension

Additional IPM Information

National Institute of Food and Agriculture IPM Program

Regional IPM Centers: - National Funding Opportunities - National Pest Management Strategic Plans & Crop Profiles - Southern IPM Center - Current News - Southern IPM Center - Employment

State IPM Programs

UF/IFAS Centers and Programe: - Center for Landscape Conservation & Ecology - Center for Sustainable and Organic Food Systems - Extension Offices and Research and Education Centers - School IPM Information Source - Small Farms and Alternate Enterprises - Solutions for Your Life (SFYL)

eXtension:: - Implementing Urban IPM

IPM Florida

The University of Florida, Institute of Food and **Agricultural Sciences** (UF/IFAS) IPM Program, **IPM Florida**, provides statewide, interdisciplinary and inter-unit coordination and assistance for UF, **IFAS** integrated pest management research, Extension and education.

Additional IPM Information & Education

- Florida-Friendly Landscaping- <u>https://ffl.ifas.ufl.edu/</u>
- Landscaping Contract-<u>https://edis.ifas.ufl.edu/pdffiles/EP/EP34700.pdf</u>
- UF/IFAS Academic Departments, Research and Education Centershttps://ifas.ufl.edu/ (Dr. Adam Dale, Turfgrass and Ornamental Entomology)
- Pesticide Applicator Training- County Extension Office-<u>https://ifas.ufl.edu/</u>
- Florida Nursery, Growers, and Landscape Association (FNGLA) Certified Professional in six areas- <u>http://www.fngla.org/</u>
- Urban Landscape Summit Center for Land Use Efficiency <u>http://CLUE.ifas.ufl.edu</u>
- FDACS, DPI Pest Alerts & Circulars- <u>https://www.fdacs.gov/Divisions-Offices/Plant-Industry/Plant-Industry-Publications/Pest-Alerts</u>

http://ipm.ifas.ufl.edu